对角线长度=√(长+宽),“勾股定理”是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理。三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。
直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。赵爽在注解《周髀算经》中给出了“赵爽弦图”证明了勾股定理的准确性,勾股数组程a²+b²=c²的正整数组(a,b,c)。(3,4,5)就是勾股数。即在任何一个平面直角三角形中的两直角边的平方之和一定等于斜边的平方。